
By Gene Kim
Coauthor of The Phoenix Project: A Novel about IT, DevOps, and
Helping Your Business Win, The Visible Ops Handbook, and the
upcoming book, The DevOps Cookbook

The IT Revolution Press Presents

11 Things You Need To Know
About DevOps

Sponsored by Planview LeanKit

2

1. What is DevOps and where did it come from?

The term “DevOps” typically refers to the
emerging professional movement that advocates
a collaborative working relationship between
Development and IT Operations, resulting in the
fast flow of planned work (i.e., high deploy rates),
while simultaneously increasing the reliability,
stability, resilience and security of the production
environment.

Why Development and IT Operations? Because
that is typically the value stream that is between the
business (where requirements are defined) and the
customer (where value is delivered).

The origins of the DevOps movement are
commonly placed around 2009, as the convergence
of numerous adjacent and mutually reinforcing
movements:

•	 The Velocity Conference movement, especially the
seminal “10 Deploys A Day” presentation given by John
Allspaw and Paul Hammond

•	 The “infrastructure as code” movement (Mark Burgess
and Luke Kanies), the “Agile infrastructure” movement
(Andrew Shafer) and the Agile system administration
movement (Patrick DeBois)

•	 The Lean Startup movement by Eric Ries

•	 The continuous integration and release movement by Jez
Humble

•	 The widespread availability of cloud and PaaS (platform
as a service) technologies (e.g., Amazon Web Services).

One of the DevOps Cookbook coauthors, John
Willis, wrote a fantastic piece on the “Convergence
of DevOps” here.

https://www.kitchensoap.com/2009/06/23/slides-for-velocity-talk-2009/
https://itrevolution.com/the-convergence-of-devops/

3

2. How does DevOps differ from agile?

One tenet of the Agile development process is
to deliver working software in smaller and more
frequent increments, as opposed to the the “big
bang” approach of the waterfall method. This is
most evident in the Agile goal of having potentially
shippable features at the end of each sprint (typically
every two weeks).

High deployment rates will often pile up in front of
IT Operations for deployment. Clyde Logue, founder
of StreamStep, is attributed as saying “Agile was
instrumental in Development regaining the trust in
the business, but it unintentionally left IT Operations
behind. DevOps is a way for the business to regain
trust in the entire IT organization as a whole.”

DevOps is especially complementary to the Agile
software development process, as it extends and
completes the continuous integration and release
process by ensuring the code is production ready
and providing value to the customer.

DevOps enables a far more continuous flow of work
into IT Operations. When code is not promoted into
production as it is developed (e.g., Development
delivers code every two weeks, but is deployed only
every two months), deployments will pile up in front
of IT Operations, customers don’t get value, and the
deployments often result in chaos and disruption.

DevOps has an inherent cultural change component,
as it modifies the the flow of work and local
measurements of Development and IT Operations.
John Willis and Damon Edwards wrote extensively
about this here.

http://devopscafe.org/

4

3. How does DevOps differ from ITIL or ITSM?

Although many people view DevOps as backlash
to ITIL (IT Infrastructure Library) or ITSM (IT Service
Management), I take a different view. ITIL and ITSM
still are best codifications of the business processes
that underpin IT Operations, and actually describe
many of the capabilities needed into order for IT
Operations to support a DevOps-style work stream.

Agile and continuous integration and release are
the outputs of Development, which are the inputs
into IT Operations. In order to accommodate the
faster release cadence associated with DevOps,
many areas of the ITIL processes require automation,
specifically around the change, configuration and
release processes.

The goal of DevOps is not just to increase the rate
of change, but to successfully deploy features into
production without causing chaos and disrupting
other services, while quickly detecting and correcting
incidents when they occur. This brings in the ITIL
disciplines of service design, incident and problem
management.

4. How does DevOps fit with Visible Ops?

I co-wrote the “Visible Ops Handbook” in 2004
with Kevin Behr and George Spafford (my fellow
coauthors of the upcoming book “The Phoenix
Project”). Visible Ops is a prescriptive guide to
capture the “good to great” transformations of
the high performing IT Operations, and one of the
key concepts was the notion of how to control and
reduce unplanned work.

In many ways, I view DevOps as the inverse,
focusing primarily on how to create fast and stable
flow of planned work through Development and
IT Operations. However, DevOps also has a more
holistic approach to systematic eradication of
unplanned work, addressing principles of resilient
engineering, and the responsible management and
reduction of technical debt.

5

5. What are the underpinning principles of DevOps?

In the DevOps Cookbook and The Phoenix Project: A
Novel About IT, DevOps, and Helping Your Business
Win, we describe the underpinning principles which
all the DevOps patterns can be derived from as
“The Three Ways.” They describe the values and
philosophies that frame the processes, procedures,
practices, as well as the prescriptive steps.

The First Way emphasizes the performance of the
entire system, as opposed to the performance of
a specific silo of work or department — this as can
be as large as a division (e.g., Development or IT
Operations) or as small as an individual contributor
(e.g., a developer, system administrator).

The focus is on all business value streams that
are enabled by IT. In other words, it begins when
requirements are identified (e.g., by the business or
IT), are built in Development, and then transitioned
into IT Operations, where the value is then delivered
to the customer in the form of a service.

The outcomes of putting the First Way into practice
include never passing a known defect to downstream
work centers, never allowing local optimization
to create global degradation, always seeking
to increase flow, and always seeking to achieve
profound understanding of the system (as per
Deming).

6

The Second Way is about creating the right to left
feedback loops. The goal of almost any process
improvement initiative is to shorten and amplify
feedback loops so necessary corrections can be
continually made.

The outcomes of the Second Way include
understanding and responding to all customers,
internal and external, shortening and amplifying all
feedback loops, and embedding knowledge where
we need it.

The Third Way is about creating a culture that
fosters two things: continual experimentation, which
requires taking risks and learning from success
and failure; and understanding that repetition and
practice is the prerequisite to mastery.

We need both of these equally. Experimentation and
risk taking are what ensure that we keep pushing
to improve, even if it means going deeper into the

danger zone than we’ve ever gone. And we need
mastery of the skills that can help us retreat out of
the danger zone when we’ve gone too far.

The outcomes of the Third Way include allocating
time for the improvement of daily work, creating
rituals that reward the team for taking risks, and
introducing faults into the system to increase
resilience.

7

6. What are the areas of DevOps patterns?

For the “DevOps Cookbook,” we divide up the
DevOps patterns into four areas:

•	 Area 1: Extend Development into Production: this
includes extending the continuous integration and
release function into production, integrating QA and
infosec into the work stream, ensuring production
readiness of the code and environment, and so forth.
(Internally, we call this “harnessing your inner Jez
Humble”)

•	 Area 2: Create Production feedback into Development:
this includes creating a complete timeline of
Development and IT Operations events to aid in incident
resolution, integrating Development into blameless
production post-mortems, enabling Developer self-
service wherever possible, and creating information
radiators to show how local decisions affect achievement
of global goals.

•	 Area 3: Embed Development into IT Operations: this
includes putting Development into the production
escalation chain, assigning Development resources to
production problem management and to help retire
technical debt, and Development cross-training IT
Operations to reduce the number of escalations.

•	 Area 4: Embed IT Operations into Development: this
includes embedding or liaising IT Operations resources
into Development, creating reusable user stories for the
IT Operations staff (including deployment, management
of the code in production, etc.), and defining the non-
functional requirements that can be used across all
projects.

Patrick Debois, one of my “DevOps Cookbook”
coauthors, wrote more about this here.

http://www.jedi.be/blog/2012/05/12/codifying-devops-area-practices/

8

7. What is the value of DevOps?

I believe there are three business benefits that
organizations get from adopting DevOps:

•	 Faster time to market (i.e., reduced cycle times and
higher deploy rates)

•	 Increased quality (i.e., increased availability, increased
change success rate, fewer failures, etc.)

•	 Increased organizational effectiveness (e.g., increased
time spent on value adding activities vs. waste, increased
amount of value being delivered to the customer).

FASTER TIME TO MARKET:

In 2007, at the IT Process Institute, we benchmarked
over 1,500 IT organizations and concluded that
high-performing IT organizations were on average
5-7x times more productive than their non-high
performing peers. They were making 14x more
changes, with one-half the change failure rate with
4x higher first fix rates, and 10x shorter Severity
1 outages times. They had 4x fewer repeat audit
findings, they were 5x more likely to detect breaches
by an automated internal control, and had 8x better
project due date performance! (You can read more
about the findings and the research here).

In our research, the highest deploy rate we observed
was approximately 1,000 production changes per
week, with a change success rate of 99.5%. We
thought this was fast...

One of the characteristics of high performers is
that they accelerate away from the herd. In other
words, the best continue to get even better. This
is absolutely happening in area of deploy rates.
Organizations who are employing DevOps practices
are out-performing the non high-performer by orders
of magnitude. Accenture recently did a study about
what Internet companies are doing, and Amazon has
gone on record stating that they’re doing over 1,000
deploys a day, sustaining a change success rate of
99.999%! You can see Jeff Jenkins 2011 Velocity talk
about the Amazon deployment and IT Operations
model here.

The capability to sustain high deploy rates (i.e.,
fast cycle times) translates into business value in
two primary ways: how quickly the organization
can go from an idea to value being delivered
to the customer (i.e., “concept to kaching” as
Damon Edwards and John Willis say), and how
many experiments can the organization be doing
simultaneously.

There is no doubt in my mind that if I’m in an
organization where I can only do one deployment
every nine months, and my competitor can do 10
deploys in a day, I have a significant, structural
competitive disadvantage.

http://realgenekim.squarespace.com/visible-ops/
https://www.youtube.com/watch?v=dxk8b9rSKOo

9

High deploy rates also enable rapid and constant
experimentation. Scott Cook, the founder of Intuit,
has been one of the most outspoken advocates for
a “rampant innovation culture” at all levels of the
organization. One of my favorite examples is quoted
below:

“Every employee [should be able to] do rapid,
high-velocity experiments... Dan Maurer runs our
consumer division, including running the TurboTax
website. When he took over, we did about seven
experiments a year. By installing a rampant
innovation culture, they now do 165 experiments
in the three months of tax season. Business result?
Conversion rate of the website is up 50 percent.
Employee result? The folks just love it, because now
their ideas can make it to market.”

To me, the most shocking part of Scott Cook’s
story is that they were doing all these experiments
during peak tax filing season! Most organizations
have change freezes during their peak seasons
(e.g., retailer may often have holiday change freezes
from October until January). But if you can increase
conversion rates, and therefore sales, during peak
seasons when your competitor cannot, then that’s a
genuine competitive advantage.

The prerequisites to do doing this include being able
to do many small changes quickly, without disrupting
service to customers.

Reduced amount of IT waste:

Mike Orzen and I have long talked about the
enormous waste in the IT value stream, caused by
long lead times, poor hand-offs, unplanned work
and rework. In an article for Michael Krigsman we
estimated how much value we could recapture by
applying DevOps-like principles.

We calculated that if we could just halve the amount
of IT waste, and redeploy those dollars in a way that
could return five times what was invested, we would
generate $3 trillion dollars of value per year.

That’s a staggering amount of value and opportunity
that we’re letting slip through our fingers. That’s
4.7 percent of annual global GDP, or more than the
entire economic output of Germany.

I think this is important, especially when I think about
the world my three children will inherit. The potential
economic impact to productivity, standards of living,
and prosperity almost makes this a moral imperative.

However, there’s an even greater cost. Working
in most IT organizations is often thankless and
frustrating. People feel as if they’re trapped in an
ever-repeating horror movie, helpless to change the
outcome. Management abdicates their responsibility
to ensure that IT is managed well, resulting in
endless intertribal warfare between development, IT
operations and information security. And things only
get worse when the auditors show up.

What inevitably results is chronic underachievement.
The life of an IT professional is often demoralizing
and frustrating. It typically leads to feelings of
powerlessness and is rife with stress which seeps
into every aspect of life. From stress-related health
problems, to social issues, to tension at home, being
an IT professional is not only unhealthy, but likely
unsustainable.

As people, we’re wired to contribute and to feel
like we’re actively making a difference. Yet, all too
often when IT professionals ask their organization for
support, they’re met with “you don’t understand,” or
worse, a barely masked, “you don’t matter.”

At the IT Revolution Press, our mission is to improve
the livelihoods of one million IT workers by 2017.
We hope that “The Phoenix Project” can help the
business and IT gain a shared understanding of the
problem, and that the “DevOps Cookbook” can help
people fix the problem.

10

8. How do Infosec and QA integrate into a
 DevOps work stream?

High deployment rates typically associated with
DevOps work streams will often put enormous
pressure on QA and Infosec. Consider the case
where Development is doing ten deploys per day,
while information security requires a four month lead
time to turn around application security reviews.
At first glance, there appears to be a fundamental
mismatch between the rate of code development
and security code testing.

An example of the risk posed by insufficiently tested
deployments is the famous 2011 Dropbox failure,
where authentication was turned off for four hours,
which enabled unauthorized users to access all
stored data.

The good news for QA and Infosec is that
Development organizations capable of sustaining
high deploy rates are likely using continual
integration and release practices, which often goes
hand in hand with a culture of requiring continuous
testing. In other words, whenever code is checked
in, automated tests are automatically run, and issues
must be fixed right away, just as if a developer
checked in code that didn’t compile.

By integrating functional, integration and information
security testing into the daily operations of
Development, defects are found and fixed more
quickly than ever.

There are a growing number of infosec tools such as
Gauntlt and Security Monkey that help test security
objectives in the development and in production
processes.

A genuine concern is that static code analysis tools
take too long to run to integrate into a continuous
integration and testing process, often requiring

hours or even days to complete. In these cases,
infosec should designate the specific modules that
has security functionality being relied upon (e.g.,
encryption, authentication modules). Whenever
those modules change, a full retest is run, otherwise,
deployments can proceed.

One last note: we observe that DevOps work
streams often put more reliance on detection and
recovery, than standard functional unit testing. In
other words, when doing development for packaged
software where it is very difficult to deploy changes
and patches, QA relies heavily on testing the code
for functional correctness before it is shipped. On the
other hand, when software is delivered as a service
and defects can be fixed very quickly, then QA
can reduce its reliance on testing, and instead rely
more on production monitoring to detect defects in
production, as long as they can be quickly fixed.

Quick recovery from code failures can be aided by
using “feature flags,” which enable and disable code
functionality via configuration settings, instead of
having to roll out an entire new deployments.

Relying on detection and recovery for QA is
obviously far more applicable when the worst that
could happen is the loss of functionality or required
performance. However, when failures risk the loss of
confidentiality or integrity of systems or data, then
reliance cannot be put on detection and recovery
-- instead, it must be tested before code is deployed,
because a production failure would generate a
genuine security incident.

We’ll be writing more about how we’re codifying the
new patterns of QA and infosec testing on the blog
in the future.

https://www.techworld.com/news/security/dropbox-admits-it-suffered-serious-password-failure-3287206/
http://gauntlt.org/
https://github.com/Netflix/SimianArmy

11

9. My Favorite DevOps Pattern #1:

All too often in software development projects,
Development will use up all the time in the schedule
on feature development. This leaves insufficient
time to adequately address IT Operations issues.
Shortcuts are then taken in defining, creating,
testing everything that the code relies upon, which
includes the databases, operating systems, network,
virtualization, and so forth.

This is certainly one of the primary causes for the
perpetual tension between Development and
IT Operations and suboptimal outcomes. The
consequences of this are well-known: inadequately
defined and specified environments, no repeatable
procedures to deploy them, incompatibilities
between deployed code and the environment, and
so forth.

In this pattern, we will make environments early in
the Development process, and enforce a policy that
the code and environment be tested together. When
Development is using an Agile process, we can do
something very simple and elegant.

According to Agile, we’re supposed to have working,
shippable code at the end of each sprint interval
(typically every two weeks). We will modify the Agile
sprint policy so that instead of having at the end of

each sprint just shippable viable code, you also have
to have the environment that it deploys into -- at the
earliest sprint, so we’re talking sprint 0 and sprint 1.

Instead of having IT Operations responsible for
creating the specifications of the production
environment, instead, they will build an automated
environment creation process. This mechanism will
create the production environment, but also the
environments for Dev and QA.

By making environments (and the tools that create
them) available early, perhaps even before the
software project begins, developers and QA can
run and test their code in consistent and stable
environments, with controlled variance from the
production environment.

Furthermore, by keeping variance between the
different stages (e.g, Development, QA, Integration
Test, Production) as small as possible, we will find
and fix interoperability issues between the code and
environment long before production deployment.

Ideally, the deployment mechanism we build is
completely automated. Tools that can be used
include shell scripts, Puppet, Chef, Solaris Jumpstart,
Redhat Kickstart, Debian Preseed, etc.

12

10. My Favorite DevOps Pattern #2:

One of my favorite quotes is from Patrick Lightbody,
former CEO of BrowserMob, who said, “We found
that when we woke developers up at 2am it was a
phenomenal feedback loop, defects got fixed faster
than ever.”

This underscores the problem where Development
checks in their code at Friday 5pm, high-fives each
other in the parking lot and then goes home, leaving
IT Operations to clean up the mess the entire
weekend. Worse, defects and known errors keep
recurring in production, forcing IT Operations to
continually firefight, and the root cause is never fixed
because Development is focused on building new
features.

An important element of the Second Way is to
shorten and amplify feedback loops, and to bring
Development closer to the customer experience
(which includes IT Operations and the end-users of
the service being delivered).

Note the symmetry here: Favorite Pattern #1 about
making environments available early is all about
embedding IT Operations into Development, while
Favorite Pattern #2 is about putting Development
into IT Operations.

Here, we put Development into the IT Operations
escalation chain, possibly putting them in Level 3
support, or even having Development be completely
responsible for the success of the code deployments,
either rolling back or fixing forward until service is
restored to the customer.

The goal is not to have IT Operations replaced
by Development. Instead, it’s to ensure that
Development sees the downstream effects of their
work and changes, and has walked in the shoes of
IT Operations enough to be motivated to fix issues
quickly to help with the achievement of global goals.

13

11. My Favorite DevOps Pattern #3:

Another recurring problem that occurs in the
DevOps value stream between Development and IT
Operations isn’t sufficiently standardized. Examples
of this is when every deployment is done differently,
every production environment is a different
snowflake. When this occurs, no mastery is ever built
in the organization in procedures or configurations.

In this pattern, we define reusable deployment
procedures that can be used across projects. There
is a very elegant solution in the Agile methodology
to this, where deployment activities are turned into
a user story. For example, we would build a reusable
user story for IT Operations called “Deploy into high
availability environment,” which then defines the
exactly the steps to build the environment, as well as
how long it takes, what resources are required, etc.

This information can then be used be used by project
managers to accurately integrate the deployment
activities into the project plan. For instance, we
would have high confidence in the deployment

schedule if we knew that the “Deploy into high
availability environment” story has been executed
fifteen times in the past year, taking an average of
three days, plus or minus one day.

Furthermore, we also gain confidence that the
deployment activities are being properly integrated
into every software project.

Recognizing that certain software projects require
unique environments that IT Operations doesn’t
officially support, we can allow for exceptions where
these environments are allowed in production, but
are supported by someone outside of IT Operations
(i.e., unsupported environments).

By doing this, we get the benefits of environment
standardization (e.g., reduced production variance,
fewer snowflakes in production, increased ability
for IT Operations to reliably support and maintain,
etc.) while allowing for special cases that allow the
nimbleness that business sometimes requires.

© 2019 Planview, Inc. All Rights Reserved.EB925LTREN

The Future of IT

We know the current system of how IT works actually
does not work. We know there is a better way. We
know that finding a solution will unlock IT’s true
potential. At IT Revolution Press, we want to help
drive the greatest change in how we manage IT.
Without a doubt, one hundred years from now,
historians will look back at this decade and say, “this
was when the Cambrian Explosion for IT occurred,
when people finally figured out how organizations
manage IT to win.”

Our goal is to positively influence the lives of 1
million IT people over the next 5 years. To make
this happen, we’re uniting thought leaders in all the
relevant domains with a common sense of purpose
and passion to help us achieve our goal and improve
IT for generations to come.

Visit the IT Revolution website to read our blog,
download more whitepapers and signup for our
newsletter.

To learn more about the Planview Lean and Agile Delivery Solution,
visit Planview.com, or contact us at market@planview.com.

Gene Kim is a multiple award

winning CTO, researcher, and

author. He was founder and

CTO of Tripwire for 13 years.

He has written three books,

including The Phoenix Project:

A Novel About IT, DevOps,

and Helping Your Business

Win, as well the highly acclaimed The Visible Ops

Handbook series. Gene is a huge fan of IT operations,

and how it can enable developers to maximize

throughput of features from “code complete” to “in

production,” without causing chaos and disruption to

the IT environment. He has worked with some of the

top Internet companies on improving deployment

flow and increasing the rigor around IT operational

processes. In 2007, ComputerWorld added Gene to

the “40 Innovative IT People Under The Age Of 40” list,

and was given the Outstanding Alumnus Award by the

Department of Computer Sciences at Purdue University

for achievement and leadership in the profession.

ABOUT THE AUTHOR

The Planview® Solution for Lean and Agile Delivery

Planview has a long history of partnering with customers to coordinate large, complex, cross-
organizational change endeavors. Our Lean and Agile Delivery solution enables software development,

DevOps, IT operations, and product engineering teams to deliver faster and scale to strategy by
visualizing value streams, optimizing the flow of work, and continuously improving their performance.
These solutions provide the centralized hub needed to ensure strategic alignment by synchronizing

programs across multiple teams with portfolio-level investments, capacity forecasting, and performance
against strategic plans. Make Agile at scale a reality. Let us help you with your journey to become the
agile leader you seek to be. No matter how far along you are in the evolution and what agility aspects

your organization will embrace, Planview is your partner to success.

http://www.planview.com
https://itrevolution.com/
http://Planview.com
mailto:market%40planview.com?subject=

